Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

نویسندگان

  • Leila Neshatian
  • Peter R Strege
  • Poong-Lyul Rhee
  • Robert E Kraichely
  • Amelia Mazzone
  • Cheryl E Bernard
  • Robert R Cima
  • David W Larson
  • Eric J Dozois
  • Crystal F Kline
  • Peter J Mohler
  • Arthur Beyder
  • Gianrico Farrugia
چکیده

Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action.

BACKGROUND Na(V)1.5 is a mechanosensitive voltage-gated sodium-selective ion channel responsible for the depolarizing current and maintenance of the action potential plateau in the heart. Ranolazine is a Na(V)1.5 antagonist with antianginal and antiarrhythmic properties. METHODS AND RESULTS Mechanosensitivity of Na(V)1.5 was tested in voltage-clamped whole cells and cell-attached patches by b...

متن کامل

Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerat...

متن کامل

State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.

Ranolazine is an antianginal agent that targets a number of ion channels in the heart, including cardiac voltage-gated Na(+) channels. However, ranolazine block of muscle and neuronal Na(+) channel isoforms has not been examined. We compared the state- and use-dependent ranolazine block of Na(+) currents carried by muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.7 isoforms expressed in human e...

متن کامل

Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels

Activity of voltage-gated potassium (Kv) channels controls membrane potential, which subsequently regulates cytoplasmic free calcium concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs). Acute hypoxia inhibits Kv channel function in PASMCs, inducing membrane depolarization and a rise in [Ca2+ ]cyt that triggers vasoconstriction. Prolonged hypoxia inhibits expression of Kv ...

متن کامل

Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle.

Small-conductance Ca2+-activated K+ (SK) channels are important participants in inhibitory neurotransmission in gastrointestinal smooth muscles. Three isoforms of an SK channel family were cloned from murine proximal colon smooth muscle. The transcripts encoding these subunits (SK1, SK2, and SK3) were detected in murine proximal colon and other peripheral tissues. The mRNA of each subunit was e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 309 6  شماره 

صفحات  -

تاریخ انتشار 2015